HIL
a system's simulation test of embedded controls by the electrical emulation of it's motors, sensors and actuators.
See Also: Loop, Current Loops, Loop Testers, Hardware in the Loop Simulation, Hardware-in-the-Loop
-
Product
HiL Simulators
NovaCarts Battery
-
Exact cell simulation for validating battery management systems (BMS). "NovaCarts Battery" represents one of the most powerful and precise cell simulation systems on the market. This is leveraged by the modular and scalable HiL system to create optimum conditions for developing new battery management functions such as state-of-charge (SoC) and state-of-health (SoH) controls, active cell balancing and electrochemical impedance spectroscopy.
-
Product
HIL and RCP DFIG Laboratory
-
This laboratory combines the best of both OPAL-RT and Festo solutions to deliver academic researchers and teachers with the ideal Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) simulation system to conduct experiments and teach in the fields of electrical machinery, power converters and wind energy generation.
-
Product
Panel-mounted HIL Power Amplifier
PAC60Ci
-
PAC60Ci is the six-phase real time simulation amplifier, with maximum RMS phase current of 30A and maximum output power of 450VA. This current amplifier is possessed of high accuracy and fast liner response.
-
Product
Configure Battery Pack Simulator for Battery Management System (BMS) Hardware-in-the-Loop (HIL) Testing
Simulator
Customized configuration for battery pack simulator by Bloomy
-
Product
HIL Breakout Board
-
Onboard 192 pin snap-in terminal dramatically simplifies the wiring between your control hardware and your HIL system. As soon as the system is up and running there are 192 test terminals for easy access to all the interface signals: firing pulses, control feedback signals and other analog/digital I/O signals.
-
Product
NI HIL and Real-Time Test Software Suite
test
Suites combine LabVIEW Professional Development System with NI's most popular application softwareIncludes LabVIEW Professional, VeriStand, and the LabVIEW Real-Time and LabVIEW FPGA modulesEach new suite includes a one-year NI Training and Certification membershipSoftware is shipped on USB 3.0 media with NI device drivers included to speed up your installationConfigure real-time test applications quickly and easily; add custom functionality
-
Product
PXI Vehicle Multiprotocol Interface Module
Interface
PXI Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. PXI Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
Product
Digital Reconfigurable I/O Device
ITA
The Digital Reconfigurable I/O (RIO) Device features user-programmable FPGA for onboard processing and flexible I/O operation. You have complete control over the synchronization and timing of all signals and operations along with custom onboard decision-making that executes with hardware-timed speed and reliability. You can configure user-defined hardware for a wide variety of applications, such as custom digital DAQ, high-speed waveform generation, sensor simulation, hardware-in-the-loop (HIL) test, custom digital communications protocols, bit error rate testing, and other applications that require precise timing and control.
-
Product
Routing Card
SET-2010
-
With 64 single-ended or 32 differential channels, the SET-2010 provides exceptional signal routing capabilities in a small form factor. Unlike traditional routing matrix cards, the SET-2010 is designed specifically for the challenges of signal routing in HIL systems.
-
Product
FADEC/EEC Test Platform
Test Platform
The FADEC/EEC Test Platform provides a hardware in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of full-authority digital engine control (FADEC) and electronic engine control (EEC) units of both rotary- and fixed-wing airframes. The system simulates one or more turbofan engines, including its sensors and actuators for use with the most sophisticated FADECs and EECs on the market. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation test systems.
-
Product
PXIe-7821, Kintex 7 160T FPGA, 128 DIO, 512 MB DRAM, PXI Digital Reconfigurable I/O Module
783485-01
Digital I/O
Kintex 7 160T FPGA, 128 DIO, 512 MB DRAM, PXI Digital Reconfigurable I/O Module—The PXIe‑7821 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PXIe‑7821 supports peer‑to‑peer streaming for direct data transfer between PXI Express modules. The PXIe‑7821 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in-‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
Product
Vehicle Multiprotocol Interface Device
Interface
The Vehicle Multiprotocol Interface Device excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time for processing complex models and applications.
-
Product
Hardware-in-the-Loop Test Systems
HIL
-
Our early development efforts and NI VeriStand expertise uniquely qualify us to maximize the benefits of and provide top-notch integration services for this software platform. Wineman Technology offers powerful and flexible MIL and HIL testing solutions, such as: Full range of MIL and HIL test systems. Software for testing. Software for simulating electronic control modules. Fault insertion unit (FIU)..
-
Product
Connector and Breakout Box
ES4640
-
The ES4640 Connector Box offers a standardized wiring and connectivity for HiL testing systems in the powertrain domain. Its front panel provides connectors for the ECU, CAN bus communication, on-board diagnostics, and LEDs for ignition and injectors. Its rear panel connects loads, failure simulation, and other components. Sample applications of the ES4640 are closed loop HiL systems for 8 cylinder gasoline and diesel engine ECUs.
-
Product
PXI Programmable Resistor Module
Module
PXI Programmable Resistor Modules are wellsuited for simulating environmental conditions in hardwareintheloop(HIL) validation. The software included provides a simple user interface that accepts inputs in units of temperature or resistance, and configures the resistance across each channel. Each module uses a 37pin DSUB connector on the front panel, as well as a 2x2 MicroFit connector for easy connection to a PXI Digital Multimeter(DMM).
-
Product
Flight Control System Test Platform
Test Platform
The Flight Control System Test Platform provides a hardware in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of Flight Control Systems (FCS) of both commercial and military aircraft. The system simulates control surface activities from multiple combinations of rudder, flaps, elevator, aileron, and engine controls to the FCS. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation test systems.
-
Product
PXI-2722,16-Bit, 5-Channel PXI Programmable Resistor Module
781985-22
Programmable Resistor Module
16-Bit, 5-Channel PXI Programmable Resistor Module—The PXI‑2722 is a test module that replicates the behavior of resistance-based inputs and outputs such as potentiometers, resistance temperature detectors (RTDs), voltage dividers, and bridge elements. The PXI‑2722 programmatically controls a series of relays to vary the resistance across each channel of an I/O connector. This function is well suited for simulating environmental conditions in hardware‑in‑the‑loop (HIL) validation. The software provides a simple user interface that accepts inputs in units of temperature or resistance and configures the resistance across each channel.
-
Product
PXI-2512, 7-Channel, 10 A PXI Signal Insertion Switch Module
778572-12
Signal Module
7-Channel, 10 A PXI Signal Insertion Switch Module—The PXI‑2512 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXI‑2512 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls
-
Product
PXI Multifunction Reconfigurable I/O Module
Multifunction Reconfigurable I/O
PXI Multifunction Reconfigurable I/O Modules feature a dedicated analog-to-digital converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. You can customize these models with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop (HIL) testing, custom protocol communication, sensor simulation, and high-speed control. PXI Express models also include peer-to-peer streaming for direct data transfer to other PXI Express models.
-
Product
PXIe-1486, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO FPD-Link™ Interface Module
787453-01
Interface
The PXIe-1486 combines the Texas Instruments Flat Panel Display Link™ (FPD-Link™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a … high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1486 makes use of a combination of FPD-Link™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable FPD-Link™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the FPD-Link™ channels. The PXIe-1486 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). FPD-Link is a trademark of Texas Instruments.
-
Product
Vehicle Multiprotocol Interface Module
C Series
Interface
C Series Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑Rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
Product
PCIe-7821, Kintex 7 FPGA, Digital Reconfigurable I/O Device
785359-01
Digital I/O
The PCIe‑7821 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7821 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in-‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
Product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787457-01
Interface
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
Product
PXI-2514, 7-Channel, 40 A PXI Signal Insertion Switch Module
778572-14
Signal Module
7-Channel, 40 A PXI Signal Insertion Switch Module—The PXI‑2514 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXI‑2514 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls
-
Product
HIL/V&V Solutions
-
SPHEREA designs test systems derived from our modular platform for V&V applications, for the whole development chain, from design to qualification
-
Product
Embedded Software Test Environment
Mx-Suite
-
Using intuitive graphics, Mx-Suite streamlines your engineering development efforts by automating tests, clarifying testable requirements, improving traceability and diagnosing possible root failure causes. Mx-Suite provides the connectivity to your MIL, SIL, or HIL test environments, allowing you to complete testing earlier in your development cycle to achieve superior product quality levels.
-
Product
PCI-7813, 3M Gate Virtex-II FPGA, Digital Reconfigurable I/O Device
779370-01
Digital I/O
The PCI‑7813 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. The PCI‑7813 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in‑the‑loop (HIL) test, custom communications protocols, bit error rate test, and other applications that require precise timing and control.
-
Product
FlexRay Interface Device
FlexRay Interface
FlexRay Interface Devices provide two fully functional FlexRay interfaces, allowing an individual engine control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. FlexRay Interface Devices work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
Product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787456-01
Interface
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a … high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
Product
PXI MultiComputing Remote Control Module
Remote Control Interface
PXI MultiComputing Remote Control Modules enable PXI systems to transfer data at multigigabytes per second with only a few microseconds of latency. You can use these models in applications such as real-time tests, hardware-in-the-loop (HIL) tests, and structural tests that need a large number of distributed PXI systems to share data with low latency.





























